
Taming the Beast
Safely Managing Database Operations in Rails

in a Team of 100s

Miles McGuire - Staff Engineer @ Intercom

Who am I?

Who am I?

• EEEEEEEE EE EEEEEEEEEEEEEEE EE EEEEEEEE

Who am I?

• EEEEEEEE EE EEEEEEEEEEEEEEE EE EEEEEEEE

• DDDDDDDD DDDDDDDDDDD DDD DDDDDDDDDD DDDDDDDD DDDD

Who am I?

• EEEEEEEE EE EEEEEEEEEEEEEEE EE EEEEEEEE

• DDDDDDDD DDDDDDDDDDD DDD DDDDDDDDDD DDDDDDDD DDDD

• HHHH HHHH HHHHHHH HHH HHH HHH HHHHHHHHHHHH HHH
aaaaaaaaaaaa

Who am I?

• Engineer on team-datastores at Intercom

• Directly responsible for databases, caching, etc.

• Hold (and raise!) the bar for productivity and
availability

• Third time speaking at Rails World!

Quick disclaimer

Quick disclaimer

• LLLL LL LLLLLLLLLLL LL LLLLL LL LL LLLLL LLLLLLLL

Quick disclaimer

• Lots of information is going to be MySQL specific

• Concepts should generalise to any database tech

How do we think about productivity?

How do we think about productivity?

• RRRRR RRR RRRRR RRRRRRRRR RRR RRRRRRRR

How do we think about productivity?

• RRRRR RRR RRRRR RRRRRRRRR RRR RRRRRRRR

• TTTTTT TTTT TTTT TTTT TTTTTT TTTTT TTTTT TTTTTTTTTTT
wwww ww wwwww

How do we think about productivity?

• RRRRR RRR RRRRR RRRRRRRRR RRR RRRRRRRR

• TTTTTT TTTT TTTT TTTT TTTTTT TTTTT TTTTT TTTTTTTTTTT
wwww ww wwwww

• EEEE EEE EE EEEEEE EEE EEE EEEEEE EEEE EEE EEEEEEEEE
fff fffffffff fffffff fff ffff

How do we think about productivity?

• Rails has great resources for learning

• Things that work when you’re small don’t necessarily
work at scale

• Even so, we should try and ensure that the interface
for engineers remains the same

• Even more important now that LLMs are doing a lot of
the driving!

You’ve just started a new Rails app

You’ve just started a new Rails app

• YYY YYYYYYYY YYYYY YYYY YYYY YY YYY YYYY YYYY YY YYYY
ddddddddd

You’ve just started a new Rails app

• YYY YYYYYYYY YYYYY YYYY YYYY YY YYY YYYY YYYY YY YYYY
ddddddddd

• YYY YYYYYYYY YYYYY YYYY YYYY YYYYYYYY YYYYYYYYYYYY

You’ve just started a new Rails app

• You probably don’t have much if any real data in your
database.

• You probably don’t need zero downtime deployments.

• Basically, you can get away with a lot.

Scale is a nice problem to have

Scale is a nice problem to have

• IIIIII IIII IIIIII II III IIIII IIII IIIIIIIIII

Scale is a nice problem to have

• IIIIII IIII IIIIII II III IIIII IIII IIIIIIIIII

• TTT TTTTTTTTT TTTTT TT TT TTTTT TTT TTT TTTT TTTTTT TTT
ssss ssssssss

Scale is a nice problem to have

• Issues will happen as you grow, it’s inevitable

• The important thing is to learn and not keep making the
same mistakes

• Remember: checklists get written in blood

Checklists

Checklists

Checklists

• DDDDDDDD DDD DDDD DDDDD DDDDDD DDDDD DD

Checklists

• DDDDDDDD DDD DDDD DDDDD DDDDDD DDDDD DD

• GGGGG GGGG GGG GGG GGGGGG GGGGGGGGGG GG GGGGGGGGGG GGG
ooooooooooo oooooooooo

Checklists

• DDDDDDDD DDD DDDD DDDDD DDDDDD DDDDD DD

• GGGGG GGGG GGG GGG GGGGGG GGGGGGGGGG GG GGGGGGGGGG GGG
ooooooooooo oooooooooo

• SSSSS SSSSS SSS SSSSS SSSSSSS SSSS SSS

Checklists

• Document the edge cases you’re aware of

• Great tool for new people onboarding to understand the
operational parameters

• Start small and don’t clutter them up!

• Every checklist item is a liability

Checklists

Checklists

• YYYY YYYYYYYYY YY YYYY YYYYYY YY YYYYYYYY YY YYYYY YY

Checklists

• Your checklist is only useful if everyone is using it

• Meet people where they’re at - if they’re opening a
migration PR they’re in Github doing PR review.

Migration
checklist
poster

Github action to

automatically post a
checklist on migration

PRs

Default checklist
 :paperclip: It looks like you are trying to merge a migration!

 You should follow this checklist:

- [] Before removing columns: ensure the columns have been added to `self.ignored_columns` on the model in a
previous pull request.
- [] Ensure proper indexes are in place if this changes a default scope.
- [] Ensure your migration PR contains only your migration files and updated schema files. No files outside the
`db` directory should be changed.
- [] **Don't merge the PR with your application changes before you complete all the steps in this checklist.**
- [] If you're making more than one change then use `change_table` and set `bulk: true` in the options. This
will run multiple changes in a single statement so that if a single statement fails the server will rollback the
entire operation, instead of leaving the migration in a half-done. If in doubt, use `change_table :table_name,
bulk: true do |t|` everywhere.
- [] Your PR must contain the schema.rb file updated. If your migration file has an older timestamp, you leave
(version: timestamp) untouched in schema.rb as you can't make the migration go back in time.
- [] Ensure you have run both `db:migrate:up VERSION=YYYYMMDDHHMMSS` and `db:migrate:down
VERSION=YYYYMMDDHHMMSS` on your local machine, where the version timestamp corresponds to the timestamp in your
generated migration filename.
- [] Add the output of the `db:migrate:up` and `db:migrate:down` commands as a comment to this PR.
- [] Merge your PR
- [] Wait until your change has been deployed to production
- [] Ensure your migration is not going to run at peak time
- [] Run your migration: `rake db:migrate:up VERSION=YYYYMMDDHHMMSS`
- [] Ensure `db/seeds.rb` has been updated to reflect the changes in the migration

The end

The end?

Not quite

Not quite

• EEEE EEEEEEEEEE EEE EEEEEEEE

Not quite

• EEEE EEEEEEEEEE EEE EEEEEEEE

• BB BBB BBBB BBB BB BB BBBBBB BBB BBBBBBBBBBB BBBB BB
ffffffff

Not quite

• EEEE EEEEEEEEEE EEE EEEEEEEE

• BB BBB BBBB BBB BB BB BBBBBB BBB BBBBBBBBBBB BBBB BB
ffffffff

• SSSSS SSSSSSS SSSSSS SSSSS SSSS S SSSSSS SSSSSS SSSSSS
22 22222 2222222 22 222 22222 222 22222 22

Not quite

• Even checklists are fallible

• By the time the PR is opened the engineering work is
finished

• Still doesn’t handle cases like a schema change taking
24 hours because of how large the table is

• Also doesn’t handle people making mistakes!

We need to go deeper

Fixing issues before they happen

Fixing issues before they happen

• WW WWWWWW WWWW WWWWWWWWW WWWWW WWWWW WWWWW WWWWWWW
wwwwwww wwwww wwwwwwwwww

Fixing issues before they happen

• WW WWWWWW WWWW WWWWWWWWW WWWWW WWWWW WWWWW WWWWWWW
wwwwwww wwwww wwwwwwwwww

• TTTT TTTTTT TTTT TTTTTTT

Fixing issues before they happen

• We should warn engineers about risks while they’re
writing their migrations

• That sounds like linting

• Let’s get rubocop on the case!

Let’s take an example
class AddUrlToCommentAndMessage < ActiveRecord::Migration
 def up
 add_column :messages, :url, :text, :limit => 1024
 add_column :messages, :ua, :text, :limit => 1024
 add_column :comments, :url, :text, :limit => 1024
 add_column :comments, :ua, :text, :limit => 1024
 add_column :comments, :emailed, :boolean, :null => false, :default => false
 end

 def down
 remove_column :comments, :emailed
 remove_column :comments, :url
 remove_column :messages, :url
 remove_column :comments, :ua
 remove_column :messages, :ua
 end
end

What’s wrong with it?

What’s wrong with it?
• EEEE EEEE EEEEEEEE E EEE EEE EEEEE

What’s wrong with it?
• EEEE EEEE EEEEEEEE E EEE EEE EEEEE

• MMMMMMMMM MMMMM MMMMMM

What’s wrong with it?
• Each line executes a new SQL query

• Migration isn’t atomic

• Put this in your .rubocop.yml

Rails/BulkChangeTable:
 Enabled: true
 Database: mysql
 Include:
 - db/migrate/*

CustomCops/
OnlyAtomicMigrations

Intercom’s own rubocop
rule for handling un-

bulked migrations

What else?

What else?

• BBBBBB BBBBBBB BBBB

What else?

• BBBBBB BBBBBBB BBBB

• DDDDDDD DDD DDD DDDDDD DD DDDDDD DDDDDDD DDDD

What else?

• BIGINT foreign keys

• Default for new tables is BIGINT primary keys

• Sometimes external references get the wrong type

CustomCops/
AlwaysMakeIdColumnsBigints

Block columns ending in
_id from being integer

typed

Last one

CustomCops/
NoExecuteInMigrations

Prevent using the
execute method in

migrations

Catching things during
development is great and

all…

Runtime checks

Unsafe operations

Unsafe operations

• MMMMMMMM MMMMMM

Unsafe operations

• MMMMMMMM MMMMMM

• WWWWWW WWWW WW WWW WWWWW WWWWWWWWWWW WWWW WW WWWWWWWWWW

Unsafe operations

• Mistakes happen

• What’s safe in dev isn’t necessarily safe in production

• Risks are even greater now that LLMs are doing a lot of
the driving

Block unsafe operations
namespace :db do
 unless Rails.env.development? || Rails.env.test?
 tasks = Rake.application.instance_variable_get :@tasks
 tasks.delete "db:migrate"
 desc "db:migrate not available in this environment"
 task migrate: :environment do
 puts "db:migrate is not available in this environment, use db:migrate:up VERSION=YYYYMMDDHHMMSS"
 end

 tasks.delete "db:reset"
 desc "db:reset not available in this environment"
 task reset: :environment do
 puts "db:reset has been disabled"
 end

 tasks.delete "db:drop"
 desc "db:drop not available in this environment"
 task drop: :environment do
 puts "db:drop has been disabled"
 end
 end
end

Block unsafe
operations

Override rake tasks in
your environment to stop

people taking unsafe
actions in production

Block unsafe migrations

Block unsafe migrations

• SSSS SSSSSSSSSS SSSS SSSSS SS SSSSSS SSSSSSSS SSSSSSSS

Block unsafe migrations

• SSSS SSSSSSSSSS SSSS SSSSS SS SSSSSS SSSSSSSS SSSSSSSS

• TTTTT TTTT TTTTTT TTTTT TTT TTT TTTTTTTTTT TTT TTTT T
lll ll lllll

Block unsafe migrations

• SSSS SSSSSSSSSS SSSS SSSSS SS SSSSSS SSSSSSSS SSSSSSSS

• TTTTT TTTT TTTTTT TTTTT TTT TTT TTTTTTTTTT TTT TTTT T
lll ll lllll

• HHHH HH HHHH HHHH HHH HHHH HH HHH H HHHH HHHH HHHH

Block unsafe migrations

• Some migrations just can’t be safely executed directly

• Tools like gh-ost exist and are excellent, but it’s a
lot to learn

• Hard to know when you need to use a tool like that

• Breaks the “just be normal” principle we talked about
earlier - can’t just run migrations with rake.

Analysing migrations at runtime

Analysing migrations at runtime

• MMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

Analysing migrations at runtime

• MMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

• UUUU UUUUUUUUUUUUUUUUUUUUUUUUUUUUU UU UUUU UUU UUUU UUU
mmmmmmmmm mmm mmmmm mm mmmmmmm

Analysing migrations at runtime

• MMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

• UUUU UUUUUUUUUUUUUUUUUUUUUUUUUUUUU UU UUUU UUU UUUU UUU
mmmmmmmmm mmm mmmmm mm mmmmmmm

• IIIIIIIIIII III IIIIIIIIII II IIII

Analysing migrations at runtime

• Monkey-patched ActiveRecord::Migration#exec_migration

• Used ActiveRecord::CommandRecorder to find out what the
migration was going to execute

• Implemented our heuristics in code

• Raise and block the migration if there’s risk

Rules as code
 if commands.any? { |operation, _| operation == :execute }
 raise(
 ActiveRecord::UnsafeDirectMigration,
 error_message(
 table: table_name,
 version: version,
 direction: direction,
 reason: "`execute` is never supported in migrations in Intercom"
)
)
 end

 if row_count >= ROW_COUNT_LIMIT || store_size >= STORE_SIZE_LIMIT
 raise(
 ActiveRecord::UnsafeDirectMigration,
 error_message(
 table: table_name,
 version: version,
 direction: direction,
 reason: unsafe_migration_reason(table_name, row_count, store_size)
)
)
 end

 super(conn, direction)
 end

 private def unsafe_migration_reason(table_name, row_count, store_size)
 return "`#{table_name}` is estimated to have #{number_to_human(row_count).downcase} rows which is greater than the cutoff
limit of #{number_to_human(ActiveRecord::DetectUnsafeMigrations::ROW_COUNT_LIMIT).downcase}" if row_count >= ROW_COUNT_LIMIT
 return "`#{table_name}` is estimated to occupy #{number_to_human_size(store_size)} which is greater than the cutoff limit of
#{number_to_human_size(ActiveRecord::DetectUnsafeMigrations::STORE_SIZE_LIMIT)}" if store_size >= STORE_SIZE_LIMIT
 end

Getting the row count and size

 private def get_table_row_count(conn, table)
 conn.exec_query("EXPLAIN SELECT COUNT(*) FROM #{table}").to_a.first["rows"] # innodb estimated cardinality of table
 end

 private def get_table_size(conn, table)
 # Estimated store size of the table and its indices (in bytes)
 query_result = conn.exec_query(<<~SQL.squish)
 SELECT (data_length + index_length) AS size
 FROM information_schema.tables
 WHERE table_schema = '#{conn.current_database}'
 AND table_name = '#{table}'
 SQL

 row = query_result.to_a.first
 row.present? ? row["size"] : 0
 end

Making drop_table safe

 if commands.any? { |operation, _| operation == :drop_table } && row_count >= 2000
 self.instance_eval <<~RUBY
 def change
 execute "RENAME TABLE #{quote_table_name(table_name)} TO #{quote_table_name("_#{version}_#{table_name}_del")}"
 end
 RUBY
 return super(conn, direction)
 end

Blocking change_column

 if commands.any? { |operation, _| operation == :change_column } && row_count >= 2000
 raise(
 ActiveRecord::UnsafeDirectMigration,
 error_message(
 table: table_name,
 version: version,
 direction: direction,
 reason: "change_column is no longer supported for in-place migrations"
)
)
 end

Detect unsafe
migrations

Analyse migrations at
runtime and block them
based on heuristics

Future

Thanks!
Here’s a link covering
all the code examples

and previous links from
this session.

