Taming the Beast

Saftely Managing Database Operations 1n Rails
in a Team of 100s

Miles McGuire — Staff Engineer @ Intercom

Who am 17

* Engineer on team—-datastores at Intercom

Who am 17

* Engineer on team—-datastores at Intercom

e Directly responsible for databases, caching, etc.

Who am 17

* Engineer on team—-datastores at Intercom
e Directly responsible for databases, caching, etc.

e Hold (and raise!) the bar for productivity and
avallability

Who am 17

Engineer on team—-datastores at Intercom
Directly responsible for databases, caching, etc.

Hold (and raise!) the bar for productivity and
avallability

Third time speaking at Rails World!

Quick disclaimer

Quick disclaimer

e |ots of i1nformation 1s going to be MySQL specific

Quick disclaimer

e |ots of i1nformation 1s going to be MySQL specific

e Concepts should generalise to any database tech

How do we think about productivity?

How do we think about productivity?

e Rails has great resources for learning

How do we think about productivity?

e Rails has great resources for learning

* Things that work when you’'re small don’'t necessarily
work at scale

How do we think about productivity?

e Rails has great resources for learning

* Things that work when you’'re small don’'t necessarily
work at scale

e Fven so, we should try and ensure that the interface
for engineers remains the same

How do we think about productivity?

e Rails has great resources for learning

* Things that work when you’'re small don’'t necessarily
work at scale

e Fven so, we should try and ensure that the interface
for engineers remains the same

e Even more 1important now that LLMs are doing a lot of
the driving!

You've just started a new Rails app

You've just started a new Rails app

* You probably don’t have much 1f any real data 1in your
database.

You've just started a new Rails app

* You probably don’t have much 1f any real data 1in your
database.

e You probably don’t need zero downtime deployments.

You've just started a new Rails app

* You probably don’t have much 1f any real data 1in your
database.

e You probably don’t need zero downtime deployments.

e Basically, you can get away with a Llot.

Scale 1s a nice problem to have

Scale 1s a nice problem to have

e Tssues will happen as you grow, 1t’'s 1nevitable

Scale 1s a nice problem to have

e Tssues will happen as you grow, 1t’'s 1nevitable

 The 1important thing 1s to learn and not keep making the
same mistakes

Scale 1s a nice problem to have

e Tssues will happen as you grow, 1t’'s 1nevitable

* The 1important thing 1s to learn and not keep making the
same mistakes

e Remember: checklists get written 1in blood

Checklists

Checklists

Checklists

e Document the edge cases you re aware of

Checklists

e Document the edge cases you re aware of

* Great tool for new people onboarding to understand the
operational parameters

Checklists

e Document the edge cases you re aware of

* Great tool for new people onboarding to understand the
operational parameters

e Start small and don’'t clutter them up!

Checklists

e Document the edge cases you're aware of

* Great tool for new people onboarding to understand the
operational parameters

e Start small and don’'t clutter them up!

e Fvery checklist 1tem 1s a liability

Checklists

Checklists

e Your checklist 1s only useful 1f everyone 1s using 1t

Checklists

e Your checklist 1s only useful 1f everyone 1s using 1t

e Meet people where they’'re at - i1if they’'re opening a
migration PR they’'re in Github doing PR review.

Migration
checklist
poster

Github action to
automatically post a
checklist on migration
PRS

Default checklist

:paperclip: It looks like you are trying to merge a migration!
You should follow this checklist:

— [] Before removing columns: ensure the columns have been added to self.ignored_columns on the model in a
previous pull request.

— [] Ensure proper indexes are in place if this changes a default scope.

— [] Ensure your migration PR contains only your migration files and updated schema files. No files outside the
"db” directory should be changed.

— [] *xDon't merge the PR with your application changes before you complete all the steps in this checklist.s*x
— [] If you're making more than one change then use change_table and set bulk: true in the options. This
will run multiple changes 1n a single statement so that if a single statement fails the server will rollback the
entire operation, instead of leaving the migration in a half-done. If in doubt, use change_table :table_name,
bulk: true do |t| everywhere.

— [] Your PR must contain the schema.rb file updated. If your migration file has an older timestamp, you leave
(version: timestamp) untouched in schema.rb as you can't make the migration go back in time.

— [] Ensure you have run both "db:migrate:up VERSION=YYYYMMDDHHMMSS and db:migrate:down
VERSION=YYYYMMDDHHMMSS on your local machine, where the version timestamp corresponds to the timestamp in your
generated migration filename.

— [] Add the output of the db:migrate:up and db:migrate:down commands as a comment to this PR.

— [1 Merge your PR

— [] Wait until your change has been deployed to production

— [] Ensure your migration is not going to run at peak time

— [] Run your migration: "rake db:migrate:up VERSION=YYYYMMDDHHMMSS"

— [] Ensure db/seeds.rb has been updated to reflect the changes in the migration

The end

The end?

Not quite

Not quite

e Fven checklists are fallible

Not quite

e Fven checklists are fallible

e By the time the PR 1s opened the engineering work 1S
finished

Not quite

e Fven checklists are fallible

e By the time the PR 1s opened the engineering work 1S
finished

e Still doesn’t handle cases like a schema change taking
24 hours because of how large the table 1is

Not quite

e Fven checklists are fallible

e By the time the PR 1s opened the engineering work 1S
finished

e Still doesn’t handle cases like a schema change taking
24 hours because of how large the table 1is

e Also doesn’t handle people making mistakes'!

We need to go deeper

Fixing 1ssues before they happen

Fixing 1ssues before they happen

e We should warn engineers about risks while they’re
writing their migrations

Fixing 1ssues before they happen

e We should warn engineers about risks while they’re
writing their migrations

e That sounds like Llinting

Fixing 1ssues before they happen

e We should warn engineers about risks while they’re
writing their migrations

e That sounds like linting

e let’'s get rubocop on the case!

Let’'s take an example

class AddUrlToCommentAndMessage < ActiveRecord::Migration

def up
add_co lum
add_colum
add_co lum
add_co lum
add_colum
end

D D T R T

def down
remove_co Lum
remove_co Lunm
remove_co Lum
remove_co Lum

remove_co Lunm
end
end

: comments,
: comments,
:messages,
: comments,
:messages,

D T T R T

:emalled
rurl
rurl

' ua

' ua

smessages, :url, :text, :limit => 1024
:messages, :ua, :text, :limit => 1024
:comments, :url, :text, :limit => 1024
rcomments, :ua, :text, :limit => 1024
:comments, :emalled, :boolean,

null => false,

default => false

What's wrong with 1t?

What's wrong with 1t?

e Fach line executes a new SQL query

What's wrong with 1t?

e Fach line executes a new SQL query

e Migration 1isn’t atomic

What's wrong with 1t?

e Fach line executes a new SQL query
e Migration 1sn’t atomic
e Put this 1n your .rubocop.yml

Rails/BulkChangeTable:
Enabled: true
Database: mysql
Include:

— db/migrate/x

CustomCops/

OnlyAtomicMigrations

Intercom’s own rubocop
rule for handling un-
bulked migrations

What else?

What else?

e BIGINT foreign keys

What else?

e BIGINT foreign keys

e Default for new tables 1s BIGINT primary Kkeys

What else?

e BIGINT foreign keys
e Default for new tables 1s BIGINT primary Kkeys

e Sometimes external references get the wrong type

CustomCops/

AlwaysMakeIdColumnsBigints

Block columns ending 1n
_1d from being i1nteger
typed

Last one

CustomCops/

NoExecuteInMigrations

Prevent using the
execute method 1in
migrations

Catching things during
development 1s great and
a L L.

Runtime checks

Unsafte operations

Unsafte operations

e Mistakes happen

Unsafte operations

e Mistakes happen

e What's safe 1n dev 1sn’'t necessarily safe 1n production

Unsafte operations

e Mistakes happen
e What's safe 1n dev 1sn’'t necessarily safe 1n production

e Risks are even greater now that LLMs are doing a Llot of
the driving

Block unsafe operations

namespace :db do
unless Rails.env.development? || Rails.env.test?
tasks = Rake.application.instance_variable_get :@tasks
tasks.delete "db:migrate"
desc "db:migrate not available in this environment"
task migrate: :environment do
puts "db:migrate 1s not available in this environment, use db:migrate:up VERSION=YYYYMMDDHHMMSS"
end

tasks.delete "db:reset"
desc "db:reset not available in this environment"
task reset: :environment do
puts "db:reset has been disabled"
end

tasks.delete "db:drop"
desc "db:drop not available in this environment"
task drop: :environment do
puts "db:drop has been disabled"
end
end
end

Block unsafe migrations

Block unsafe migrations

e Some migrations just can’'t be safely executed directly

Block unsafe migrations

e Some migrations just can’'t be safely executed directly

e Tools like gh—-ost exist and are excellent, but 1t’'s a
lot to learn

Block unsafe migrations

e Some migrations just can’'t be safely executed directly

e Tools like gh—-ost exist and are excellent, but 1t’'s a
lot to learn

e Hard to know when you need to use a tool like that

Block unsafe migrations

e Some migrations just can’'t be safely executed directly

e Tools like gh—-ost exist and are excellent, but 1t’'s a
lot to learn

e Hard to know when you need to use a tool like that

e Breaks the “just be normal” principle we talked about
earlier — can’'t just run migrations with rake.

Analysing migrations at runtime

Analysing migrations at runtime

e Monkey—patched ActiveRecord::Migration#exec_migration

Analysing migrations at runtime

e Monkey—patched ActiveRecord::Migration#exec_migration

e Used ActiveRecord: :CommandRecorder to find out what the
migration was goiling to execute

Analysing migrations at runtime

e Monkey—patched ActiveRecord::Migration#exec_migration

e Used ActiveRecord: :CommandRecorder to find out what the
migration was goiling to execute

e Tmplemented our heuristics 1n code

Analysing migrations at runtime

e Monkey—patched ActiveRecord::Migration#exec_migration

e Used ActiveRecord: :CommandRecorder to find out what the
migration was going to execute

e Tmplemented our heuristics 1n code

e Raise and block the migration i1f there’s risk

Rules as code

if commands.any? { |operation, _| operation == :execute }
raise(

ActiveRecord: :UnsafeDirectMigration,

error_message
table: table _name,
version: version,
direction: direction,
reason: " execute 1is never supported in migrations in Intercom"

)
)

end

it row_count >= ROW_COUNT_LIMIT || store_size >= STORE_SIZE_LIMIT
raise(

ActiveRecord: :UnsafeDirectMigration,

error_message
table: table_name,
version: version,
direction: direction,
reason: unsafe_migration_reason(table_name, row_count, store_size)

)
)

end

super(conn, direction)
end

private def unsafe_migration_reason(table_name, row_count, store_size)
return " #{table_name} is estimated to have #{number_to_human(row_count).downcase} rows which is greater than the cutoff
limit of #{number_to_human(ActiveRecord: :DetectUnsafeMigrations: :ROW_COUNT_LIMIT).downcase}" if row_count >= ROW_COUNT_LIMIT
return " #{table_name} 1is estimated to occupy #{number_to_human_size(store_size)} which is greater than the cutoff limit of

#{number_to_human_size(ActiveRecord: :DetectUnsafeMigrations::STORE_SIZE_ LIMIT)}" if store_size >= STORE_SIZE_LIMIT
end

Getting the row count and size

private def get_table_row_count(conn, table)
conn.exec_query("EXPLAIN SELECT COUNT(x) FROM #{table}").to a.first["rows"] # innodb estimated cardinality of table
end

private def get_table_size(conn, table)

Estimated store size of the table and its indices (in bytes)
query_result = conn.exec_query(<<~SQL.squish)

SELECT (data_length + index_length) AS size

FROM information_schema.tables

WHERE table_schema = '#{conn.current_database}'

AND table_name = '#{tablel}'

SQL

row = query_result.to_a.first
row.present? ? row['"size"] : 0
end

Making drop_table safe

if commands.any? { |operation, _| operation == :drop_table } && row_count >= 2000
self.1instance_eval <<~RUBY
def change
execute "RENAME TABLE #{quote_ table_name(table_name)} TO #{quote_ table_name(" #{version} #{table_name} del")}"
end
RUBY

return super(conn, direction)
end

Blocking change_co lumn

if commands.any? { |operation, _| operation == :change_column } && row_count >= 2000
raise(

ActiveRecord: :UnsafeDirectMigration,

error_message (
table: table name,
version: version,
direction: direction,
reason: '""change_column 1s no longer supported for in-place migrations"

)
)

end

|115 1;t

'b.

Detect unsafe

migrations

®
Analyse migrations at AP’
runtime and block them l-

based on heuristics

Future

Thanks!

Here’'s a link covering
all the code examples
and previous Llinks from
this session.

